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Abstract— The functional connectivity within a specific set of 

brain networks (or domain) can assume different configurations 

known as domain states that change with time. Recently, we 

proposed an information theoretical framework that models the 

finite set of domain states as elements of an alphabet. Significant 

bits of information have been found to be shared among 

domains, but specific domain codification was not explored. This 

work describes a method to identify code words used to transmit 

and receive information between the cerebrum and the 

cerebellum based on dynamic domain connectivity estimated 

from functional magnetic resonance imaging (fMRI). Following 

the theory of jointly typical sets, the developed method identifies 

the codeword length and the specific combination of domain 

states on each codeword. Resting state fMRI data was taken from 

121 subjects with no significant age difference between males and 

females. Group independent component analysis was utilized to 

identify important brain networks and group them in a 

cerebellum and six other domains representing the cerebrum. 

The amount of information between the cerebellum, the 

executive control and sensorimotor domains showed a 

statistically significant number of bits. The proposed method 

quantified specific temporal sequences of domain states encoded 

within bits shared between cerebellum and cerebrum. 

Keywords—dynamic functional connectivity, mutual 

information, information theory, brain, cerebellum  

I. INTRODUCTION 

Technological advances in the analysis of functional 
magnetic resonance imaging (fMRI) data have provided 
knowledge about the way brain areas are connected to each 
other [1]. One important discovery suggests that our brains 
have evolved into a connected network consisting of sparse 
local clusters with few long-range connections among clusters 
[2]. These clusters can be found in resting state fMRI defining 
brain domains (sets of related brain areas) grouped according 
to functional associations [1, 3, 4]. Two examples of these 
domains are the set of brain areas in charge of sensorial-motor 
(SEN) functions and the collection of functionally different 
sections of the cerebellum (CER). An informational theoretical 
framework has been proposed recently to study the 
communication between domains by estimating the number of 
bits required for this communication [5]. Although the 
existence of bits of information shared among domains can be 
estimated, further development is required to determine what is 
the underlying code used for this communication. 

A common way of studying the resting state brain, fMRI 
scans obtained during rest without a particular task, is to 
analyze coactivations among brain areas. Different but 
replicable patterns of coactivations have been found to define 
the brain state at a given moment in time [6]. Several 
techniques have been developed to identify and track these 
dynamic state changes [7, 8]. Instead of whole brain analysis, 
this work is concerned with the dynamic states of individual 
domains estimated by utilizing the dynamic functional domain 
connectivity (dFDC) previously proposed [9]. Fig. 1 
synthesizes the dFDC procedure for domains CER and SEN. 
Temporal activation information extracted from the 
components of two domains of interest is used to estimate short 
lived correlations within a temporal window at different points 
in time. This procedure result in a sequence of correlation 
matrices defined at each time point. The connectivity patterns 
from the correlation matrix forms a finite set that shuffles 
sequentially in time. The dFDC analysis identifies these 
patterns and determines their temporal sequence. The 
probability distribution of estimated dFDC states is then used 
to calculate information theory measures that characterize the 
domain connectivity [5]. 

 

 
Fig. 1. Summary of the dFDC procedure. A pair of domains are 

selected. Then a sliding window correlation and clustering are 
performed to discover dFDC states and their temporal sequence of 

appearing. 
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This work utilizes outcomes from the dFDC analysis to 
decode sequences of states that determine the communication 
among domains. We have previously proposed a method to 
estimate entropy and mutual information from dFDC [5]. 
Borrowing from communication theory, the existence of 
mutual information indicates an underlying messaging system 
with its own coding structure. In the following, we make a first 
attempt to uncover this coding by selecting the cerebrum and 
cerebellum as two main structures in the central nervous 
system. 

II. CODES AND JOINTLY TYPICAL SETS 

Between two code generating ends, mutual information 
measures the number of bits shared between ends. If one end is 
thought to send a message using a given number of bits the 
other end is said to receive the message. Any discrepancy in 
the amount of bits can be attributed to sources unrelated to the 
communication link such as contaminating noise [10]. Yet the 
definition of mutual information does not specify sending or 
receiving side, but measures shared bits in a non-directional 
manner. The final value depends on the probability of 
observing a particular combination of codewords. For example, 
if the appearance of codeword A at endpoint 1 frequently 
occurs when codeword B appears at endpoint 2, then the (A, B) 
pair might be an important messaging combination. At this 
point is might be easy to think that low probability codeword 
pairs are less relevant than those with high probability. 
However, information theory says that overly high probability 
pairs are also uninteresting. We might think that highly 
repeated patterns might produce desensitization which is 
described by the concavity of entropy measures. The basic idea 
is to find a set of codeword pairs carrying most of the bits 
shared between endpoints. 

One of the most basic strategies of data compression 
known as the Shannon code is to assign the number of bits 
using –log2(pi), where pi is the probability of the  i

th
  codeword 

[11]. While this strategy is not always practical, it is very 
useful for theoretical illustration. That is because if we average 
over all possible pairs, i.e. we take the sum –∑ pi log2(pi), we 
will obtain the entropy which also represents the theoretical 
minimum number of bits that can describe the data. Notice that 
–0*log2(0) = –1*log2(1) =0, thus high (pi →1) and low (pi →0) 
probabilities both indicate a low number of bits. This property 
of entropy indicates that codewords carrying large number of 
bits exhibit probabilities somewhat in between 0 and 1. The 
group of codewords fulfilling this expectation forms the typical 
codeword pairs of the data. This typical set of codewords can 
be determined by choosing codeword in the vicinity of the 
entropy. 

In the case of brain domains, we identify codewords as the 
finite set of connectivity patterns, named dFDC states, similar 
to those illustrated in Fig. 1. Assume now these dFDC states 
influences the appearance of dFDC states in another part of the 
brain. Possible outcomes of this end to end relationship are all 
possible pairs formed by endpoint states. The analysis of such 
outcomes can be done using joint probabilities pi(X,Y) (where i 
denote a state pair constituted by a state from endpoint X and 
another one from state Y) and the joint entropy H(X,Y) = –∑ 
pi(X,Y) log2(pi(X,Y)). Similar to the data compression case, the 

relevant end to end state pairs constitute a jointly typical set 
where -log2(pi(X,Y)) values are in the vicinity of the entropy 
H(X,Y). Using the parameter ε > 0 to represent the vicinity, we 
can characterize the typical state pairs as 

| –log2(pi(X,Y)) – H(X,Y) | ≤  ε . 
 

The theoretical considerations up to this point have 
delineated a way of selecting state pairs (one state at each brain 
domain endpoint) representing a relevant number of bits. 
However, it is unlikely that each brain domain utilizes single 
state codewords to determine a meaningful message. It is 
plausible that instead, a sequence of domain states is utilized to 
establish the messaging between endpoints. While the number 
of states is undetermined, we shall for now parameterize them 
as n and represented as (X

n
,Y

n
) indicating pairs of n-tuple 

states. An extension to the previous equation would suffice to 
mathematically describe the typical set [11] (eq. 8.38) 

| – (1/n) log2(pi(X
n
,Y

n
)) – H(X,Y) | ≤  ε . 

 

The picture described by this equation indicate that as 
domain states appears in sequential progression, the probability 
of some combinations of states will carry more information (in 
our case in the form of bits) than others. This panorama is 
depicted in Fig. 2. In order to estimate an optimal length n we 
suggest to use the entropy rate H(X,Y)/n. This value 
asymptotically approximates the entropy of the data as n 
increases. Using the elbow criteria, an optimal length n will be 
at the point where higher lengths does considerable improve 
the entropy rate. 

 

III. MATERIALS AND METHODS 

The subject pool consists of 121 healthy subjects (71 
females) with a mean age of 25.4 ± 8.3. A two-sample t-test 
(p>0.37) show no difference in age between males and 
females.  Subjects did not exhibit injury to the brain, brain-
related medical problems, bipolar or psychotic disorders, 
ADHD or a history of substance abuse/dependence including 
alcohol. All participants provided informed consent in 
accordance with institutional guidelines at the University of 
New Mexico. 

Resting state fMRI data was collected from all participants. 
All images were collected on a 3 Tesla Siemens Trio scanner. 

 
Fig. 2. Concurrent sequences of dFDC states can be associated to 

different number of bits. The proposed method aims at finding those 

dFDC state sequences utilizing the theory of jointly typical sets. 
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A five-minute resting state run was completed by each 
participant using a single-shot, gradient-echo echo planar 
imaging sequence [TR = 2000 ms; TE = 29 ms; flip angle = 
75⁰; FOV = 240 mm; matrix size = 64 x 64]. Foam padding 
and paper tape was used to restrict motion within the scanner. 
Thirty-three contiguous, axial 4.55 mm thick slices were 
selected to provide whole-brain coverage (voxel size: 3.75 x 
3.75 x 4.55 mm). The first five images were eliminated to 
account for T1 equilibrium effects leaving a total of 145 
images. Data were preprocessed using the statistical parametric 
mapping (http://www.fil.ion.ucl.ac.uk/spm) software [12]. The 
preprocessing steps included slice-timing correction, 
realignment, co-registration, spatial normalization and 
transformation to the Montreal Neurological Institute (MNI) 
standard space. 

Data were analyzed using Infomax-based group 
independent component analysis (gICA) [13] with 120 and 100 
components for the first and second decomposition levels 
respectively. A total of 32 components were selected based on 
frequency content and visual inspection in order to include 
components that were low noise and free of major artifacts 
[14]. The gICA time courses were then filtered using a band-
pass filter from 0.01 to 0.15 Hz. The set of RSNs were 
identified and grouped in their functional domains. Spatial 
overlap with functional brain areas were confirmed by visual 
comparison with the 90 spatial maps defined by Shirer [15] and 
by running peak activation coordinates through the meta-
analysis software publicly available at 
http://www.neurosynth.org/. The functional domains are SBC 
(Subcortical), CER (Cerebellar), SEN (Sensorimotor), VIS 
(Visual), DMN (Default Mode Network) and ECN (Executive 
Control Network). Chosen RSNs have peak activations in grey 
matter, low spatial overlap with known vascular, ventricular, 
motion, and susceptibility artifacts. 

IV. RESULTS 

A. Mutual Information 

As briefly stated in the introduction, our illustrative goal is 
to study the code used between cerebrum and cerebellum. For 
this purpose, the communication with the cerebellum (CER 
domain) was paired with all other defined domains from the 
cerebrum defining six domain pairs (ECN-CER, SEN-CER, 
SBC-CER, CER-CER, VIS-CER and DMN-CER). On each of 
the 6 dFDCs, we used k-means clustering [16] with a 
correlation distance metric and a window size of 80 seconds. 
The number of clusters for each dFDC was set to three after 
using the elbow criterion on the cluster validity index [7]. 

The first step is to determine significant mutual 
information. Mutual information analysis will allow us to 
determine the domain pairs of interest. There were 15 cross 
domain pairs for which joint probabilities and mutual 
information were estimated. Cross-domain mutual information 
was analyzed utilizing the framework previously proposed in 
[5]. A null model bootstrapped with ten million iterations was 
estimated to identify significant mutual information. The 
results are displayed in Fig. 3. Significant mutual information 
was found between SEN-CER and ECN-CER dFDCs which 
indicate a high probability of finding a communication code 
between these two domains. 

 

B. Results for Jointly Typical Sets 

The two endpoints that we utilize are the ECN-CER and 
SEN-CER. The alphabets for these two endpoints correspond 
to the estimated domain states that can be seen in Fig. 1 and 
Fig. 4. Fig. 1 was used both as illustrative example and to show 
results from this section. Fig. 4 completes the information 
needed to discuss the significant results found. Applying the 
elbow criteria to entropy rates, illustrated in Fig. 5a, we 
estimated an optimal length of n = 3 words.  

The next parameter to set is ε. First, we estimated joint 
probabilities and joint entropies calculating the joint 
occurrence of triplets (three temporally consequent domain 
states) of the ECN-CER and SEN-CER. The procedure of 
selecting triplets from each domain is depicted in Fig. 2. Fig. 
5b displays the difference | – (1/n) log2(pi(X

n
,Y

n
)) – H(X,Y) | 

for all triplet combinations found. Notice that not all 
combinations occurred and thus their estimated probability was 
zero. These zero probabilities were not in the plot. Instead of 
setting ε we choose the three triplet combinations with the 
lowest value in Fig. 5b. These three sets of triplets hold most of 
the bits in the whole sequence of dynamic states.  

Fig. 6 shows the triplet sequences at each endpoint ECN-
CER and SEN-CER. The results indicate that information is 
higher when ECN-CER is in its state 1 and SEN-CER switch 
between corresponding state 2 and state 3. Also, state 3 of 
SEN-CER with a transition state 2 to state 1 in ECN-CER have 
equal amount of information. 

 

 
Fig. 4. This dFDC showed significant mutual information with the 

dFDC displayed in Fig. 1.  

 
Fig. 3. Mutual information among dFDCs. Only one out of the 15 

possible combinations was siginificant (false discovery rate corrected). 
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V. DISCUSSION 

As shown in this work, and demonstrated in a previous 
publication from our group [5], there is significant information 
sharing between ECN, cerebellum and sensorimotor brain 
domains. The novelty in the current analysis is the discovery of 
those state sequences that characterizes this information. These 
sequences can be thought as codewords in the communication 
among these domains. The results show that high information 
transfer occurs when one of the domain states stay stable while 
the other one suffer a state transition. This suggests that one 
domain pair might be executing a function that requires a 
specific connectivity state. At the same time, the other domain 
connectivity might have ended its requirement for a given 
domain state and it is switching to optimally use the time. This 
connectivity exchange carries most of the bits in the 
communication and might be important for the healthy 
functioning of resting state brain. 

Although the data was obtained from resting state brains, 
we can see that information is exchanged among areas that are 
usually active during demanding tasks such as the ECN and 
sensorimotor areas [17]. The engagement of these areas is not 
inconsistent with the resting state brain. These areas might 
provide an extrospective state of mind within the resting state 
to provide readiness for external stimuli response and switch 
out of resting state [18]. Following these considerations, it can 
be considered important for the resting state brain that 
significant amounts of information be shared among areas 
required for attention and task execution.  
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Fig. 6. The three sequence of triplets refered in Fig. 5. These sequences 

carry most of the bits among ECN, SEN and CER domains. 

 
Fig. 5. 5a) Elbow criteria to determine the codeword length n. 5b) 

Three different sets of triplets (see Fig. 6) shared the same closeness 
with the entropy H(X,Y). 
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